A words-of-interest model of sketch representation for image retrieval
نویسندگان
چکیده
In this paper we propose a method for sketch-based image retrieval. Sketch is a magical medium which is capable of conveying semantic messages for user. It’s in accordance with user’s cognitive psychology to retrieve images with sketch. In order to narrow down the semantic gap between the user and the images in database, we preprocess all the images into sketches by the coherent line drawing algorithm. During the process of sketches extraction, saliency maps are used to filter out the redundant background information, while preserve the important semantic information. We use a variant of Words-ofInterest model to retrieve relevant images for the user according to the query. Words-of-Interest (WoI) model is based on Bag-ofvisual Words (BoW) model, which has been proven successfully for information retrieval. Bag-of-Words ignores the spatial relationships among visual words, which are important for sketch representation. Our method takes advantage of the spatial information of the query to select words of interest. Experimental results demonstrate that our sketch-based retrieval method achieves a good tradeoff between retrieval accuracy and semantic representation of users’ query. Keywords— Image retrieval, Sketch representation, Bag-ofvisual Words model, Words-of-Interest model, Markov chain model
منابع مشابه
research publications and other research outputs A words - of - interest model of sketch representation for image retrieval
In this paper we propose a method for sketch-based image retrieval. Sketch is a magical medium which is capable of conveying semantic messages for user. It’s in accordance with user’s cognitive psychology to retrieve images with sketch. In order to narrow down the semantic gap between the user and the images in database, we preprocess all the images into sketches by the coherent line drawing al...
متن کاملThe Open University ’ s repository of research publications and other research outputs A words - of - interest model of sketch representation for image retrieval
In this paper we propose a method for sketch-based image retrieval. Sketch is a magical medium which is capable of conveying semantic messages for user. It’s in accordance with user’s cognitive psychology to retrieve images with sketch. In order to narrow down the semantic gap between the user and the images in database, we preprocess all the images into sketches by the coherent line drawing al...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملA Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features
Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...
متن کاملPalarimetric Synthetic Aperture Radar Image Classification using Bag of Visual Words Algorithm
Land cover is defined as the physical material of the surface of the earth, including different vegetation covers, bare soil, water surface, various urban areas, etc. Land cover and its changes are very important and influential on the Earth and life of living organisms, especially human beings. Land cover change monitoring is important for protecting the ecosystem, forests, farmland, open spac...
متن کامل